Incremental Support Vector Learning: Analysis, Implementation and Applications

نویسندگان

  • Pavel Laskov
  • Christian Gehl
  • Stefan Krüger
  • Klaus-Robert Müller
چکیده

Incremental Support Vector Machines (SVM) are instrumental in practical applications of online learning. This work focuses on the design and analysis of efficient incremental SVM learning, with the aim of providing a fast, numerically stable and robust implementation. A detailed analysis of convergence and of algorithmic complexity of incremental SVM learning is carried out. Based on this analysis, a new design of storage and numerical operations is proposed, which speeds up the training of an incremental SVM by a factor of 5 to 20. The performance of the new algorithm is demonstrated in two scenarios: learning with limited resources and active learning. Various applications of the algorithm, such as in drug discovery, online monitoring of industrial devices and and surveillance of network traffic, can be foreseen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Sparsification for Real-time Online Model Learning

Online model learning in real-time is required by many applications such as in robot tracking control. It poses a difficult problem, as fast and incremental online regression with large data sets is the essential component which cannot be achieved by straightforward usage of off-the-shelf machine learning methods (such as Gaussian process regression or support vector regression). In this paper,...

متن کامل

Incremental online sparsification for model learning in real-time robot control

For many applications such as compliant, accurate robot tracking control, dynamics models learned from data can help to achieve both compliant control performance as well as high tracking quality. Online learning of these dynamics models allows the robot controller to adapt itself to changes in the dynamics (e.g., due to time-variant nonlinearities or unforeseen loads). However, online learning...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Implementation Issues of an Incremental and Decremental SVM

Incremental and decremental processes of training a support vector machine (SVM) resumes to the migration of vectors in and out of the support set along with modifying the associated thresholds. This paper gives an overview of all the boundary conditions implied by vector migration through the incremental / decremental process. The analysis will show that the same procedures, with very slight v...

متن کامل

Fault Diagnosis Using the Incremental Learning Algorithm with Support Vector Machine

To prevent process interruption and eventual losses, the need for a reliable fault detection and diagnosis system (FDD) is completely acknowledged. Besides the capability to recognize known faults automatically, a further requirement for a FDD is adaptability. If the model cannot be adapted to deal with changes, variations due to external changes, decaying performance, Poisoning of catalyst etc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2006